

DARPA Bidder's Conference SN02-23

Prognostics and Health Management at Smiths

Aerospace - Electronic Systems

Mr. Tom Conquest

September 26, 2002

engineering value in aerospace

Recognized Need for Military PHM

JSF

Requirement for 98% automated detection of all functional failures

UAV

 Autonomous, real-time availability of health status

FCS

 BIA calls for Logistics Decision Support, UAVs, Health Monitoring

Electrostatic Sensors

Wear-site sensor (WSS)

- specific component
- onset of wear

Oil-line sensor (OLS)

- wear debris
- oil degradation / contamination

Gas Path Debris Turbine Engine Monitoring

EDMS/IDMS Results

Ingestion Tests
Carrier Deck Material

← SFET - LPT4 Rub

Potential Benefits of Technology

Inlet

- Detection and discrimination
 - Damaging/ nondamaging/ particulate FOD
 - 'Fluids', e.g. salt water
- Identify operating situations where FOD occurs
- Identify:
 - that damaging object has been ingested
 - whether object has caused immediate damage to the engine
- Correlation with EDMS

Exhaust

- Direct indication of fault
- Early detection prognostic/prediction
- Operational benefits
 - Reduce consequential damage
 - Reduce maintenance costs & time, Improve maintenance scheduling
 - Increase availability, repair when necessary
- Detection of 'difficult to monitor' faults
 - Combustor related faults
- Dual functionality
 - LOD + EDMS

Oil

- Wear-site precursor detection
 - Wear site sensor (WSS)
 - Early warning of component degradation
 - essential when time to failure is short and will result in significant secondary damage
 - Pre-maintenance operational guidance
 - safe return to base for repair / maintenance
- Oil-line monitoring
 - Oil Line Sensor (OLS)
 - Non-metallic, metallic and ferrous debris
 - Sensitivity to smaller (~20μm) debris
 - Oil degradation / contamination

FUMS[™], A Flight Usage Management System

FUMS[™] provides:

- Flight data display, analysis and prognostics to optimize aircraft Management, Affordability, Availability, Airworthiness and Performance (MAAAP)
- Component-level usage, life and condition management
- Virtual sensors via model-based data synthesis
- User friendly fusion, mining, trending and intelligent force management
- User friendly interfaces with logistics/maintenance databases (for example, MOD HUMS and Oil Wear Debris databases)

FUMS[™] is a single software framework currently operating on real data downloaded from various aircraft data collection systems on Eurofighter, F16, Tornado, Harrier, Chinook, Lynx, Apache, RB199 & Pegasus.

FUMS^{TM,} A Flight Usage Management System

- Real-time structural integrity status and individual aircraft tracking
- Model-based usage indices to summarise flight data and at the same time indicate the life and condition of aircraft/engine components.
- Synthesis of strains from flight data via mathematical networks and, hence, elimination of the high operational costs required for maintaining a large number of strain gauges on each individual aircraft
- Synthesis of operational parameters (e.g. AUM, CG)
- Synthesis of damage/fatigue from flight data (model-based damage models)
- Conventional damage/fatigue models

Mathematical Network

FUMSTM: Force Management

FUMSTM: Some of the PHM Models/Information

Active Matrix Composites

Piezo Embedded 8 layer Composite

ProDAPS

- Uses advanced Al tools to provide a probabilistic, knowledge rich, framework to do the following:
 - Integrate all available types of engine monitoring data
 - Provide advanced data analysis capabilities to maximize the available information
 - Fuse data from all sources to provide more accurate diagnostics and prognostics
 - Support the user in optimum decision making
 - Improve its performance through the mining of historical data to discover new knowledge
- Provides a flexible, component based, architecture where components can be configured for specific applications

Key Features of ProDAPS

Data Mining Example: Investigation of Engine Stall Problem

ProDAPS Key Elements

Probabilistic High Level

Reasoning Engine

Event routing facilitates temporal reasoning

Multiple Causal Networks for knowledge-based reasoning

Higher level reasoning based on multiple network outputs

Learning Module

Directs search for new knowledge based on prior beliefs

Induction learning tests and refines beliefs, discovers new knowledge

Sensor Modules

Varying capabilities and levels of intelligence

Analysis Module

Advanced tools for enhancing information from Sensor Modules

Decision Support Module

Decision Networks provide support for optimum decision making by evaluating options

Prognostic Information

- Can generate XML reports of mining results
- Can operate over the WEB

- Legacy systems
- New Systems

- Different locations
- Etc.

and outputs.

